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Abstract 
Multiresolution methods for representing data at multi- 

ple levels of detail are widely used for large-scale two- and 
three-dimensional data sets. We present a four-dimensional 
multiresolution approach for time-varying volume data. 
This approach supports a hierarchy with spatial and tem- 
poral scalability. 

The hierarchical data organization is based on i /z  sub- 
division. The fi-subdivision scheme only doubles the 
overall number of grid points in each subdivision step. This 
fact leads to fine granularity and high adaptivity, which is 
especially desirable in the spatial dimensions. 

For high-quality data approximation on each level of de- 
tail, we use quadrilinear B-spline wavelets. We present a 
linear B-spline wavelet lijiing scheme based on f i  subdi- 
vision to obtain narrow masks for the update rules. Nar- 
row masks provide a basis for out-ofcore data exploration 
techniques and view-dependent visualization of sequences 
of time steps. 

1 Introduction 

Due to the improvements in the performance of com- 
puting power and storage capacity achieved over the last 
decade, today’s data-intensive scientific applications are ca- 
pable of quickly generating and storing huge amounts of 
data. Downsampling can be used to reduce the data to a 
manageable amount. The reduced data can be examined 
by scientists to spot regions of interest, for which more de- 
tailed examinations can be performed. Today, visualization 
applications have to deal with large-scale data in the spatial 
as well as temporal dimensions and their representation at 
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multiple levels of detail. 
Multiresolution methods for representing data at multi- 

ple levels of detail are widely used for large-scale two- and 
three-dimensional data sets. Furthermore, for time-varying 
data sets techniques have been developed that make use of 
temporal coherence of, for example, numerically simulated 
data. We present a four-dimensional multiresolution ap- 
proach, where time is treated as fourth dimension. We deal 
with large scales in spatial and temporal dimensions in a 
single hierarchical framework. 

For large-scale volume representation, one should use 
regular rather than irregular data formats, since grid con- 
nectivity should be implicit and data should be easily and 
quickly accessible. To overcome regular data structures’ 
disadvantage of coarse granularity, we have developed a 
fi-subdivision scheme [ 141. Every ii/2-subdivision step 
only doubles the number of vertices, which is a factor of 
f i  in each of the n dimensions. We briefly review the i/z- 
subdivision scheme for n = 2 in Section 3 and generalize it 
to the four-dimensional case. 

Another sacrifice when using regular data structures is 
that downsampling is done based purely on grid structure 
and without considering data values. Therefore, some sci- 
entifically interesting details in a data set can get lost and 
be overseen for further examinations. To avoid this, we use 
a linear B-spline wavelet scheme: The data value at a ver- 
tex p is updated when changing the level of detail, i. e., the 
value varies with varying level of detail. On a coarse level, 
the value represents the value at p itself as well as an aver- 
age value of a certain region around p. This approach leads 
to better approximations on coarser levels. 

Quadrilinear B-spline wavelets have the property that the 
computation of the wavelet coefficient at a vertex p is not 
only based on the neighbors of p but also on vertices that are 
farther away in the spatial and temporal dimensions. Thus, 
when using out-of-core techniques to operate on or visu- 
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alize large-scale data, substantial amounts of data must be 
loaded from external memory, with low UO-performance. 
Lifting schemes with narrow filters can be used to overcome 
this problem. In Section 4, we describe the one-dimensional 
lifting scheme from [4] and generalize it to four dimensions 
based on a hypercube refinement approach. In Section 5,  
we adjust the quadtilinear B-spline wavelet lifting scheme 
to i /z subdivision. We provide results in Section 6. 

2 Relatedwork 

For time-varying volume representation, sophisticated 
approaches make use of the data’s temporal coherence and 
focus on the detection of spatial/structural changes and u p  
date in time [l, 27, 29, 311. These approaches consider 
scaling in time but not in space. An approach dealing with 
large-scale data in time and space was described by Shen et 
al. [28]. Their approach combines an octree with a binary 
tree to a Time-Space Partition (TSP) tree, where the octree 
is used for the spatial and the binary tree for the temporal 
hierarchy. We treat time as a real fourth dimension. 

Octrees are a common data structure used for multires- 
olution volume representation [15, 19,23,26. 371. Com- 
pared to irregular data structures, as discussed in [5,8,9]. 
regular structures like octrees have the advantage that grid 
connectivity is implicit and data is easily and quickly ac- 
cessed. However, the refinement steps have to conform to 
the topological constraints, which can make regular struc- 
tures less adaptive. To overcome this disadvantage, we de- 
veloped the @-subdivision scheme, a regular data organi- 
zation supporting finer granularity [14]. For example, an 
octree refinement step doubles the number of vertices in ev- 
ery dimension, which leads to a growth factor of eight; a 
@-subdivision step only doubles the overall number of ver- 
tices. Therefore, fi subdivision, in general, requires less 
vertices than octrees to satisfy specified approximation or 
image quality e m r  bounds. Since finer granularity leads to 
higher adaptivity, this fact still holds when using adaptive 
refinement techniques. 

Considering time-varying volume visualization, isosur- 
face extraction [ 10,27,31] and volume rendering [ 1,291 of 
single time steps are common, and distributed computing 
can be used to speed it up [ 16,201. A comparison of differ- 
ent visualization techniques is provided in [33]. However, 
for large-scale data, the visualization techniques can only 
operate in real time after downsampling the data. There- 
fore, large-scale time-varying volume visualization requires 
us to utilize multiresolution representations with scalability 
in time and space. Such a representation is discussed in this 
paper. 

The splitting step of the i/2-subdivision scheme goes 
back to Cohen and Daubechies [6] for n = 2 and Maubach 
[ 171 for arbitrary n. It can be described by using triangular 

or quadrilateral meshes (n = 2). or their generalizations 
for higher dimensions. For tetrahedral meshes the splitting 
step of the fi-subdivision scheme is equivalent to longest- 
edge bisection [7,22,38]. In the following, we consider the 
quadrilateral case and its generalization, e. g., cuboids for 
n = 3 and hypercuboids for n = 4. Figure 1 depicts two 
different illustrations of a hypercube. Figure l(a) shows the 
symmetry in all four dimensions. We use the illustration in 
Figure l(b) that “stretches” the hypercube in the temporal 
dimension. 

Velho and Zorin [35] introduced a-subdivision sur- 
faces (n = 2) by adding an averaging step to the &- 
subdivision splitting step. They showed that the produced 
surfaces are C‘-continuous at regular and C’-continuous at 
extraordinary vertices. (For an introduction to subdivision 
methods, we refer to [36].) 

When downsampling time-varying volume data in a reg- 
ular fashion, as it is done by i/2-subdivision and the method 
of Shen et al. [28], data is not grouped due to changes in 
time or space. Thus, on coarse levels, some important de- 
tails may be missing. We overcome this problem by us- 
ing wavelets. Wavelet schemes provide a means to generate 
best approximations in a multiresolution hierarchy. Stoll- 
nitz et al. [30] described how to generate wavelets for sub- 
division schemes. However, fi-subdivision wavelets can 
lead to over- and undershoots, which are disturbing during 
visualization, e. g., when extracting isosurfaces from dif- 
ferent levels of approximation. They can cause changes 
of isosurface topology when changing the level of resolu- 
tion. We would like to preserve isosurface topology as much 
as possible when changing between approximation levels. 
Therefore, we generate linear B-spline wavelets for the fi- 
subdivision scheme. Linear B-spline wavelets are known to 
produce high-quality approximations and they have inter- 
polating scaling functions, which guarantees interpolating 
refinement filters, see [ 121, i. e., no over- and undershoots 
can appear. (For an introduction to B-spline techniques, we 
refer to [24].) 

The computation of wavelet coefficients at a certain ver- 
tex for wavelets with good approximation quality, e. g., for 
linear B-spline wavelets, is not limited to only adjacent ver- 
tices. Localization, however, is strongly desirable when we 
want to apply a wavelet scheme to adaptive refinement and 



to out-ofare visualization techniques. Lifting schemes as 
introduced by Sweldens [32] decompose wavelet computa- 
tions into several steps, but they assert narrow filters, see 
Figure 6. Bertram et al. [3, 41 defined a lifting scheme 
for one- and twodimensional B-spline wavelets using a 
quadtree organization of the vertices. 

(a) f a (b) 

Figure 3. Masks of fi-subdivision step: (a) 
inserting centroid; (b) adjusting old vertices. 

Wavelets for general dilation matrices go back to 
Riemenschneider and Shen [25] who used a box-spline 
approach for their construction. KovaZeviC and Vetterli 
[13] and, more recently, Uytterhoeven [34], KovakviC 
and Sweldens [12], and Linsen et al. [14] developed lift- 
ing schemes that can be applied to fi-subdivision data 
structures. Uytterhoeven’s method [341 addresses the two- 
dimensional case, Kovdevid and Sweldens’ approach [12] 
as well as Linsen et al.3 technique [14] deal with the two- 
and three-dimensional cases. The filters used in [12] that 
produce good approximations are not narrow enough for our 
purposes. On the other hand, the update rule for the narrow 
filters in [12] is the identity, which does lead to high-quality 
approximations. 

Another main difference between the non-separable fil- 
ters used in [34] and [12] and the approach in [14] is the 
update rule. Following the approach from [14], we update 
the vertices in, for example, a @-subdivision scheme by 
applying h t  the three-, then the two-, and finally the one- 
dimensional update rules. This approach automatically in- 
cludes the boundary cases, which are not sufficiently ad- 
dressed in [34] and [12]. Moreover, in this paper we show 
how our lifting scheme can be generalized to four dimen- 
sions. 

3 The @subdivision scheme 

We first descxibe the case n = 2. For a fi-subdivision 
step of a quadrilateral Q, we compute its centroid c and 
connect c to all four vertices of Q. The “old” edges of 
the mesh are removed (except for the edges determining 
the mesh/domain boundary). Figure 2 illustrates four fi- 
subdivision steps. 

Figure 2. Illustration of f i  subdivision. 

The mask used for the computation of the centroid c is 
given in Figure 3(a). Figure 3(b) shows the mask of the av- 
eraging step according to [35]. A &subdivision step is 
executed by first applying the mask shown in Figure 3(a), 
which inserts the new vertices, and then (after the topologi- 
cal mesh modifications) applying the mask shown in Figure 
3(b), which adjusts the old vertices. 

This subdivision scheme for quadrilaterals is analogous 
to the &-subdivision scheme of Kobbelt [ 111 for triangles. 
Therefore, we call it f i  subdivision. 

We now generalize the subdivision scheme to f i  subdi- 
vision for arbitrary dimension n. The splitting step is exe- 
cuted by inserting the centroid and adjusting vertex connec- 
tivity. The averaging step applies to every old vertex v the 
update rule 

where w is the centroid of the adjacent new vertices. 
The literature currently provides no analysis of averag- 

ing steps for dimensions larger than two. Thus, at present, 
we cannot provide a solution for the “optimal choice” of a 
used in the update rule. (Some investigations were made in 
[21].) However, when using the a-subdivision scheme for 
large-scale time-varying volume data, we deal with rectilin- 
ear grids with all hypercuboids having the same size. Thus, 
the update rule does not affect the position of the vertices 
regardless of the specific a value, but it only affects the de- 
pendent function values at the vertices. In [ 141, we showed 
that the fi-suwivision wavelets are not appropriate for our 
purposes. Thus, we replace them by B-spline wavelets and 
do not need to choose a value for a. 

In Figure 4, four @subdivision steps are shown. In 
each step, the centroids of the polyhedral shapes are in- 
serted, and the connectivity is adjusted. In Figure 4, we 
only show the spatial connectivities within the time steps 
and do not show the connectivity information between time 
steps. 

The four subdivision steps can be described in the fol- 
lowing way: Figure 4(a) shows the initial hypercuboid, 
which consists of two cuboids at two time steps, say ti and 
t 3 .  The two cuboids are connected according to Figure 1 (b). 
The first subdivision step inserts the centroid of the hyper- 
cuboid, shown in Figure 4(b), which can be interpreted as 
the centroid of a cuboid at time step t 2  = 9. The second 
subdivision step inserts the centroids of the eight cuboids 
within the original hypequboid, shown in Figure 4(c). The 
third step inserts the centers of the faces of these eight 
cuboids or of the original hypercuboid, respectively, shown 
in Figure 4(d). Finally, the fourth step inserts the midpoints 
of the edges of the eight cuboids or of the original hyper- 

v = av + (1 - a)w , 



t 2  t 3  

Figure 4. Steps of fi  subdivision. 

cuboid, respectively, shown in F i p  qe). The geometric 
structure shown in Figure *e) consists of 16 hypercuboids. 
Thus, it is topologically equivalent to the one shown in Fig- 
ut *a).  our s/z-subdivision steps p~oduce the same result 
as one "hexadectree" refinement step, where a hexadectree 
is the generalization of an octree to four dimension, i.e., 
nodes of hexadectrees represent hypercuboids. Fine gran- 
ularity can therefore be supported for multiresolution data 
visualization purposes by using a s/z-subdivision approach. 

4 The Linear B-spline wavelet lifting scheme 

We briefly review the one-dimensional lifting scheme 
discussed in [3] and generalize it to the four-dimensional 
case. We adjust the four-dimensional lifting scheme to be 
suitable for i /z  subdivision. 

The one-dimensional B-spline wavelet lifting scheme 
uses two operations that are defined by the following two 
masks, called s-lift and w-lift: 

s-lift(u, b): 
w-lift(u, b): 

( a  b a ) ,  
( u  b u ) .  

The s-lift mask is applied to the old vertices o and their new 
neighbors 0 ,  whereas the w-lift mask is applied to the new 
vertices 0 and their neighbors 0 ,  see Figure 5(a). For a de- 
tailed derivation of the lifting scheme that we use, as well as 
for its analysis (smoothness, stability, approximation order, 
and zero moments), we refer to [2]. 

Figure 5. Refinement step for one- and four- 
dimensional meshes. 

Using the s-lift and w-lift masks, a linear B-spline 
wavelet encoding step is defined by sequentially executing 
the two operations 

w-lift(-i,l) and 
s-lift( a, I) . 

A linear B-spline wavelet decoding step is defined by se- 
quentially executing the two operations 

s-lift( - i ,  1) and 
w-lift( 3,1) . 

Figure 6 illustrates the one-dimensional linear B-spline 
wavelet lifting scheme. 

Figure 6. Onedimensionai linear 6-spilne 
wavelet lifting scheme. 

When applying four-dimensional B-spline wavelets to 
a hexadectree-organized set of vertices, four kinds of new 
vertices are obtained when executing a refinement step: the 
new vertices inserted at the midpoints of old edges 0, the 
new vertices inserted at the centers of old faces A, the new 
vertices inserted at the centroids of old cuboids A, and the 
new vertices inserted at the centroids of old hypercuboids 
0, see Figure 5(b). Therefore, we must apply four different 
masks. For three- and four-dimensional masks, we show 
the structures of the masks and separately define the values 
for the different kinds of vertices. We derive the needed n- 
dimensional masks by convolution of the one-dimensional 
masks in the various coordinate directions. The s-lift(u, b) 
masks are defined by this depiction: 



a2 ab a2 ) 

interpolation of the values at the four vertices o (with which 
the vertex A shares a face); and (iii) that the value at a ver- 
tex A is defined by trilinear interpolation of the values at the 
eight vertices o (with which the vertex A shares a cuboid). 
Since we are using linear B-spline wavelets, linear interpo- 
lation is appropriate. Consequently, one ohms the mask 
W-liftcncode(a, b): 

, a  b a ) .  

The w-lift(cz, b) masks are defined by this depiction: 

aa ab aa 

( b2 
ab ) and 

ab az 

( a  b a ) .  

5 A lifting scheme for .;/z subdivision 

Recalling the steps of a i/2-subdivision scheme, which 
are depicted in Figure 4, after the execution of the different 
steps different configurations arise. Therefore, we have to 
distinguish between the different steps. The following de- 
scription starts with the situation shown in Figure 4(b) (hy- 
pervolwne case). proceeds with the situation shown in Fig- 
ure 4(c) (volume case), continues with the situation shown 
in Figure 4(d) (face case). and finally treats the situation 
shown in Figure 4(e) (edge case), which is topologically 
equivalent to the situation shown in Figure 4(a). 
The hypervolume case 
In the hypervolume case, we perform linear B-spline 
wavelet encoding according to the situation shown in Figure 
4(b). Due to the lifting scheme discussed in Section 4, we 
must start with a w-lift operation. Therefore, we apply four 

Since the vertices 0 ,  A, and A are not available, no masks 
analogous to the one-, two-, and threedimensional w-lift 
masks, as described in Section 4, have to be applied. How- 
ever, theoretically these operations were executed, which 
must be considered in the next step. Since (i) the values 
at the vertices are assumed to be linear interpolations of 
the values at the vertices 0 ,  (ii) the values at the vertices A 
are assumed to be bilinear interpolations of the values at the 
vertices 0, and (iii) the values at the vertices A are assumed 
to be trilinear interpolations of the values at the vertices 0, 

the values at the vertices 0 ,  A, and A vanish. Therefore, 
the mask defining the next s-lift operation, which is an ana- 
logue of the four-dimensional s-lift mask defined in Section 
4, reduces to the mask s-liftenc~e(a, b): 

~ 

0 (1‘ 
4.. - - - - - 

*..- 
4. -. . . -. ...- 

Again, the analogous versions of the one-, two-, and three- 
dimensional s-lift masks from Section 4 are only applied 

For the decoding step, we start with the s-lift operation, 
i. e., we adjust the four-dimensional s-lift mask from Sec- 
tion 4. Having (theoretically) applied the one-, two-, and 
threedimensional s-lift masks from Section 4 with vanish- 
ing values at the vertices ., A, and A, (i) the values at 
the vertices A are linear interpolations of the values at the 
neighbor vertices 0, multiplied by the factor 2a, (ii) the val- 
ues at the vertices A are bilinear interpolations of the values 
at the neighbor vertices 0, multiplied by the factor 4a2, and 
(iii) the values at the vertices are trilinear interpolations of 
the values at the neighbor vertices 0, multiplied by the fac- 
tor 8a3. By renaming the factor a to ti, we obtain the mask 

theoretically. 

S-liftdecode (a, b) : a a O b ‘  

Again, the analogous versions of the one-, two-, and three- 
dimensional s-lift masks from Section 4 are only applied 
theoretically. Since these one-, two-, and three-dimensional 
decoding s-lift operations are the inverse of the one-. two-, 

masks similar to the foGw-lift masks in Section 4,subject 
to the constraint that no values are available at the vertices 
or A, and A. 

Regarding the structures of the four-dimensional w-lift 
masks described in Section 4. we assume (i) that the value 
at a vertex . is defined by linear interpolation of the val- 
ues at the two vertices o (with which the vertex 0 shares an 
edge); (ii) that the value at a vertex A is defined by bilinear 

*a4+4Sia8+~’a’bt4iibb’ 
4- _ _  - . . - -4 _ _ _ _  _--  

*,.- .a- 



and three-dimensional encoding s-lift operations, the ver- 
tices a, A, and A have their former values assigned again, 
Le., the values vanish at these vertices. Hence, the mask 
for the final w-lift operation, which is the mask analogous 
to the four-dimensional w-lift mask defined in Section 4, 
reduces to the mask w-liftenco~e(a, b): 

All the masks are as narrow as they can be. 
The volume case 
When applying linear B-spline wavelet encoding to the sit- 
uation depicted in Figure 4(c), we must make sure that we 
do not violate the assumptions made for the hypervolume 
case. We assume that the values at the vertices A are trilin- 
ear interpolations of the values at the neighbor vertices 0. 

Thus, when the values at the vertices A are available, their 
values should be computed only from the values at the ver- 
tices 0. Therefore, we are left with the three-dimensional 
case, which is examined in [ 141. The construction is anal- 
ogous to the four-dimensional (hypervolume) case. Encod- 
ing is performed by applying the masks W-liften,ode(a, b), 
depicted as - - - -_ - - - 

e a3+:a%+:dz 
' ' .b'  

and S-liftcneo,je(a, b), depicted as 

I _._ .___ 
6 ..- 1./. -_-.__._ 

e-------- * 

and decoding is performed by applying the masks 
s-liftdeco& (a, b) , depicted as 

The face case 
When applying linear B-spline wavelet encoding to the sit- 
uation depicted in Figure 4(d), we must not violate the as- 
sumption that the values at the vertices A are bilinear inter- 
polations of the values at the neighbor vertices 0. When the 
values at the vertices A are available, their values should be 
computed only from the values at the vertices 0. Thus, we 
are left with the two-dimensional case, which is also exam- 
ined in [ 141. Encoding is performed by applying the masks 
W-liftcncde(a, b), depicted as 

a' +ab 
h2 

/ fI.2 

and the decoding is performed by applying the masks 
S-liftdccode(a, b), depicted as 

a2 + 2Gah 

a2 + 2uob 

a' + 2Zab 

a' + 2aah 
b2 

and w-liftdecode(a, b), depicted as 
/ a2 

The edge case 
When applying linear B-spline wavelet encoding to the sit- 
uation shown in Figure 4(e), which is topologically equiv- 
alent to the situation shown in Figure 4(a), we must not vi- 
olate the assumption that the values at the vertices a are 
linear interpolations of the values at the neighbor vertices 0. 

When the values at the vertices are available, their values 
should be computed only from the values at the vertices 0. 

Thus, we are left with the one-dimensional case, illustrated 
in Section 4. We can apply masks (1) and (2) to deal with 
the edge case. 

It is a significant advantage of our scheme that the vol- 
ume, face, and edge cases cover automatically boundary 
volumes, boundary faces, and boundary edges of the do- 
main. Thus, no additional boundary case examination is 
necessary. 

6 Results 

We have applied our techniques to numerically simulated 
hydrodynamics data. The data set used to generate Figure 7 
is the result of a three-dimensional time-varying simulation 
of the Richtmyer-Meshkov instability and turbulent mixing 
in a shock tube experiment [18]. The simulation result is 
stored in 274 time steps, and each time step has an asso- 
ciated 2O@ rectilinear grid. For each vertex, an entropy 
value between 0 and 255 is stored. The figure shows one 
slice of the rectilinear grid for two different time steps. Fig- 
ures 7(a)-(c) show time step 96 and Figures 7(d)-(f) time 
step 184. Figures 7(a) and 7(d) show the original slices 
at highest resolution (20482), whereas Figures 7(b), 7(c), 
7(e), and 7(f) show the slices after downsampling the four- 
dimensional data using i /z  subdivision with a downsam- 
pling ratio of 212. (The downsampling ratio is defined as 
the original number of vertices divided by the number of 



vertices at the used coarser resolution.) For the creation of 
Figures 7(b) and 7(e), we have applied the $6-subdivision 
hierarchy without linear B-spline wavelet encoding, and for 
the creation of Figures 7(c) and 7 0 ,  we have applied the 
i/2-subdivision hierarchy with linear B-spline wavelet en- 
coding. For the wavelet encoding, we have only considered 
this single slice. Since spatial and temporal dimensions are 
treated equally, we have effectively performed a trilinear B- 
spline wavelet encoding. 

Considering the temporal dimension, the wavelet encod- 
ing leads to an averaging over several time steps. There- 
fore, one time step represents changes of several time steps 
of the original data set. In Figure 7(c), we see that the “bub- 
ble” rising in the middle of the slice is already more clearly 
visible than in Figure 7(b). 

Considering the spatial dimensions, the wavelet encod- 
ing leads to an averaging over several adjacent vertices 
within each grid of one particular time step. Therefore, 
detailed features do not get lost during downsampling. In 
Figure 7 0 ,  we can still see where the bubbles next to the 
center bubble have their “offspring.” The fine connections 
indicating the offspring are visible in Figure 7(d) but get lost 
during downsampling when not using wavelets, see Figure 
7 w .  
To quantify the improvement in approximation quality, 

we have computed approximation errors for coarser levels 
of approximation by comparing them to the original, high- 
est resolution level. Given the original four-variate function 
F, represented discretely by sample values at locations xi, 
i E [l, nJ1, nu][l, n,][l, nt], we have used the mt-mean- 
square (RMS)  error 

where f(xi) denotes the approximated function value ob- 
tained by quadriliiear interpolation applied to a hyper- 
cuboid in the coarser level of resolution. In other words, 
the value of !(xi) is obtained by performing quadrilinear 
interpolation of the 16 function values associated with the 
comers of the hypercuboid containing the point xi. 

Figure 8 shows the RMS errors of the time-varying three- 
dimensional simulation of the Richtmyer-Meshkov instabil- 
ity for various levels of resolution. (We scaled the RMS 
errors to the interval [O,l].) For all resolutions, we have 
obtained smaller RMS errors when using linear B-spline 
wavelets. Furthermore, the benefits of using linear B-spline 
wavelets increase as resolutions decrease. 

For data organization, the storage of values can be (re-) 
organized as shown in Figure 9 for the two-dimensional 
case. The depicted scheme scales to arbitrary dimensions. 
Reorganization leads to spatial locality of data belonging 
to the same level of detail, and spatial locality leads to fast 

data access. This fact can be used for progressive visual- 
ization, e. g., for generating images progressively by load- 
ing data from slower external memory, which is inevitable 
when dealing with large-scale data sets. Progressive visual- 
ization starts by using the upper left block in the right pic- 
ture, then adding the upper right block, and, finally, adding 
the lower block. Reordering ensures that data can be read 
in a continuous stream without reading data multiple times. 

downsampling - ratio 

Figure 8. RMS errors for entropy in a 
four-dimensional simulation of Richtmyer- 
Meshkov instability for different levels of 
resolution, without and with linear B-spline 
wavelets. 

reorder 1-1 
I p s i v e  

wsualization I- - progressive 
visualization I- 

Figure 9. Reordering data for progressive vi- 
suallzation. 

The time-varying volume data used for the examples 
shown in Figures 10 and 11 represents the evolution of an 
argon bubble disturbed by a shock wave. (The data set 
is courtesy of The Center for Computational Sciences and 
Engineering, Lawrence Berkeley National Laboratory, see 
http://seesar.lbl.gov/ccse.) The simulated data consists of 
450 time steps, each one having an associated 640 x 256 x 
256 rectilinear grid. For each vertex, a density value be- 
tween 0 and 255 is stored. We have constructed a $6- 
subdivision hierarchy combined with quadrilinear B-spline 
wavelets. We have used slicing for generation of Figure 10 
and volume rendering for the creation of Figure 1 1. 

In Figure 10, we show a $6-subdivision hierarchy, gen- 
erated in combination with quadrilinear B-spline wavelets, 
at three levels of downsampling. Figure 10 shows a slice 
through the volume for time step 196. Since this data set 
is not very large in spatial dimensions, downsampling by 
a factor of two in every spatial dimension can be suffi- 
cient, whereas further downsampling in the temporal di- 
mension may be desired. The fact that our four-dimensional 

http://seesar.lbl.gov/ccse
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Figure 7. Entropy of a time-varying simulation of Richtmyer-Meshkov instability, visualized by a slice 
for two time steps of the original data, shown in (a) and (d), after fi-subdivision downsampling 
without linear B-spline encoding, shown in (b) and (e), and after $&subdivision downsampling with 
linear B-spline encoding, shown In (c) and (f). 

wavelet scheme is decomposed into a four-, h e - ,  two-, 
and one-dimensional step allows us to integrate linear B- 
spline wavelet schemes of any dimension into one frame- 
work. For example, having downsampled the data set in 
four dimensions with the i/2-subdivision scheme combined 
with quadrilinear B-spline wavelets, we can continue to 
downsample only in the temporal dimension by using one- 
dimensional downsampling combined with linear B-spline 
wavelets. 

Considering Figure ll(b), we have performed a i/z- 
subdivision downsampling combined with quadrilinear B- 
spline wavelets down to a level of detail with downsampling 
ratio 24, followed by onedimensional downsampling steps 
with linear B-spline wavelets down to a level of detail with 
(total) downsampling ratio 27. One can compare this result 
to the one obtained when downsampling without wavelets, 
see Figure 1 l(a). Both pictures are the results of applying 
volume rendering to time step 192. Figure 1 l(a) only shows 
data from time step 192, whereas Figure ll(b) contains in- 
formation of a short sequence of time steps close to time 
step 192, including all possibly significant changes. 

7 Conclusions 

We have introduced i/2 subdivision combined with 
quadrilinear B-spline wavelets for time-varying volume 
data representation. The approach provides a multiresolu- 
tion hierarchy for four-dimensional data sets, where time is 
the fourth dimension. Temporal and spatial dimensions are 
treated equally in one framework. 

The multiresolution data organization based on the fi- 
subdivision scheme provides fine granularity by only dou- 
bling the overall number of data points in each subdivision 
step. In contrast, a generalization of an octree refinement to 
four dimensions increases the overall number of data points 
by a factor of 16 in each refinement step. 

By integrating a wavelet scheme into the subdivision ap 
proach, we obtain, in general, much better approximations 
on each level of detail. We have developed a lifting scheme 
for quadrilinear B-spline wavelets. The lifting scheme uses 
narrow masks. This fact makes it possible to utilize the 
wavelet scheme for viewdependent, adaptive multiresolu- 
tion visualization and facilitates out-of-core data explora- 



Figure 11. Density of a time-varying simulation of an interaction of a shock with an argon bubble, vi- 
sualized by volume rendering time step 192. Combined i/2-subdivision hierarchy in four dimensions 
and one dimension with downsampiing ratio 27 without (a) and with (b) linear B-spline wavelets. 

Figure 10. Density of a time-varying simula- 
tion of an interaction of a shod< with an ar- 
gon bubble, visualized by slicing the wiume 
daa for time step 196. Shown are levels of 
the  subdivision hierarchy with quadriiin- 
ear B-apiine wavelet encoding for downsam 
piing ratios 20 (a), 2' (b), and 2* (c). 

tion techniques. 
The wavelet encoding reorganizes data such that spatial 

locality of data belonging to the same level of detail is pro- 
vided, which speeds up data access. No additional memory 
is required. The i/2-subdivision scheme also does not re- 
q u k  us to store additional connectivity information. 

Since the masks of our lifting scheme are of constant size 

and the number of steps for our lifting scheme is constant, 
our algorithms run in linear time with respect to the num- 
ber of original data. Since the masks are narrow and linear 
B-spline wavelet operations are decomposed into only two 
steps, run time constants are small. We have applied our 
approach to large-scale time-varying data sets by using out- 
o f a r e  techniques and combined our approach with vari- 
ous visualization methods. Considering the shown exam- 
ples and the computed approximation errors, we conclude 
that our approach provides a valuable tool for hierarchical 
representation of time-varying volume data. 
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